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Abstract. Power series in number density are used to study the distribution of cluster sizes in 
a continuum analogue of bond percolation on a lattice. The clusters are formed by 
overlapping of geometrical regions that are randomly distributed in space. The regions are 
circles and oriented squares in two dimensions, and spheres and oriented cubes in three 
dimensions. The power series are based on a graphical expansion, using topological weights 
from percolation theory and probabilities obtained from cluster integrals. Analysis of the 
mean cluster size series provides estimates of the critical percolation density, and the 
associated critical exponent. The critical densities are consistent with previous Monte Carlo 
evaluations, and the exponents are close to those found for the corresponding lattice 
problems. 

1. Introduction 

In this paper, series expansion techniques are used to discuss certain critical properties 
of a continuum analogue of bond percolation on a lattice. The problem is defined as 
follows. N points are randomly distributed in a volume R. A geometrical region (e.g. a 
sphere) is centred on each point. If two such regions overlap, their centres are said to be 
connected, and to form part of a cluster. In this way, any given configuration of points is 
associated with a set of clusters of various sizes. This is illustrated in figure 1, where nine 
points are divided into two clusters of size one (isolated points), two clusters of size two, 
and one cluster of size three. As in lattice percolation theory, one wishes to know the 
distribution of cluster sizes in the limit where N and fl are very large, and their ratio 
p = N/R is fixed. This is obtained by averaging over all random configurations of points 
having density p .  In particular, one would like to know the critical density p c  at which 
macroscopically large clusters first appear. Also, one would like to determine critical 
exponents associated with the behaviour of the cluster size distribution near the critical 
density. 

The continuum percolation problem arises in several models for physical systems 
(Holcomb and Rehr 1969, Pike and Seager 1974). It has been studied by numerical 
simulation (most recently, Fremlin 1976), and also as a limit of certain lattice percola- 
tion problems (Domb 1972). 

We have evaluated a number of terms in the power series expansion, in density, of 
the mean number of clusters of a given size, the mean number of clusters of any size, and 
the mean cluster size. The geometrical regions defining ‘overlap’ are taken to be circles 
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Figure 1. Division of a configuration into clusters. 

or oriented squares in two dimensions, and spheres or oriented cubes in three 
dimensions. 

A ratio analysis of the series coefficients for mean cluster size, for the four cases just 
listed, provides numerical estimates for the corresponding critical percolation densities. 
Our results agree resonably well with previous estimates. The ratio analysis also 
provides estimates for the critical exponent y determining the divergence of the mean 
cluster size at p c .  In accordance with a conjecture of Sykes and Essam (1964), that the 
critical exponents are dimensional invariants, our values of y are consistent with those 
found for lattice percolation. Our results also compare favourably with one numerical 
simulation (Roberts 1967) which produced ‘experimental data’ on the mean cluster size 
for circles as a function of density. 

2. Derivation of series 

For a configuration of N points, the continuum percolation problem is similar to bond 
percolation on the complete graph KN (we follow the terminology of Essam and Fisher 
1970). (No analogy is perfect. In some respects, the problem dealt with here is also an 
analogue of site percolation. In developing the basic equation (2.6), we found it useful 
to focus on the analogy to bond percolation; at equation (2.9), an analogy to site 
percolation is evident. The results are, of course, not affected by the point of view taken 
in obtaining them.) In bond percolation on a lattice, a fraction p of the edges of a lattice, 
randomly chosen, are designated as ‘coloured’; clusters are defined as subgraphs of 
vertices connected by strings of coloured edges. In the continuum problem, the lattice is 
replaced by the complete graph KN, and ‘coloured’ is replaced by ‘overlapping’. In both 
cases one requires certain topological weights, associated with the subgraphs which can 
be embedded in the lattice or in KN. However, the probabilities associated with these 
subgraphs are different. In bond percolation on a lattice, the probability of a subgraph 
G having e(G)  edges is p e ( 0 ) ;  in the continuum problem, the probability is obtained 
from a cluster integral which measures the volume of configuration space available for 
that subgraph. 

To show the similarities and differences, it is convenient to use a notation which 
includes both continuum and lattice bond percolation. Let K be the graph on which 
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calculations are to be performed; this is either the lattice L or the complete graph KN. 
Let R denote a particular configuration; this is either the set of coloured edges, or the 
positions of N points in a volume a. We associate a characteristic function with each 
edge (Y = [ i ,  j ]  of the graph K :  

1 
lattice f[i,il(R) ={ 
continuum f[i,il(R) = { 1 

if [ i ,  i] is coloured 
otherwise, 

if regions i and i overlap 
otherwise. 

A cluster in the configuration R corresponds to a connected subgraph H of K in the 
obvious way: the vertex set V ( H )  is the set of points in the cluster, and the edge set 
E ( H )  is the set of coloured or overlap bonds in the cluster. Then a given subgraph 
H c  K has a characteristic function which is.unity if H is truly a cluster in R, and zero 
otherwise, 

Here, E K ( H )  is the edge perimeter of H in K, i.e. those edges which if coloured would 
make the cluster larger or introduce new edges within H.  The number of clusters of size 
s is found by summing the characteristic function over all connected subgraphs of K 
which have s vertices, 

(2.3) 

By expanding the product n(l -fs) and re-ordering the summations in the resulting 
expression for n,, we obtain 

The weights w,(G) are given by 

(2.4) 

( 2 . 5 )  

where e ( G )  is the number of edges in G, and the primed sum is over all H c G which are 
connected, have s vertices, and have full edge perimeter in G (i.e. any edge of G not in 
H i s  adjacent to a vertex of H).  Note that w,(G) is independent of the starting graph K. 
The average number of clusters of size s is found by averaging (2.4) over all configura- 
tions. We are concerned here with the average number of clusters per point in the 
thermodynamic limit, or 

From here on, the lattice and continuum problems must be treated differently. 
First, we consider the lattice problem. The number of embeddings of a free 

connected graph c in L is proportional to N as N goes to infinity. There is no 
correlation between probabilities that distinct edges are coloured, so the average in 
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(2.6) may be factored. The average of a single f a  is just p ,  the fraction of coloured 
bonds. Then (2.6) becomes 

(2.7) 

where (c; L)N-' is the number of embeddings, per site, of c in L. This result, an explicit 
power series in p ,  is familiar in lattice percolation theory. 

In the continuum problem, the averages in (2.6) are related to cluster integrals. We 
define a quantity which remains finite, for a connected graph, in the limit of infinite 
volume 0, 

I ( G )  = K' dR V(G) n fa. (2.8) 
a € E ( G )  

The integral is taken over the positions of the points in the vertex set of G. It has exactly 
the same structure as the cluster integrals that occur in the virial theory of the equation 
of state of a hard sphere gas (or a hard cube gas, etc). As long as we are concerned only 
with clusters such that V(c)<< N, (2.6) becomes 

( n , )  = C (P "(')-'/ v (c ) ! ) ( c ;  ~ v ( ~ ) ) w , ( c ) ~ ( c ) .  (2.9) 
C 

where (c; Kv(=,) is the number of ways to label c. This is the final form, to be compared 
with (2.7). 

3. Results and analysis 

To complete the calculation of the cluster size distribution, we need the weights w,(c) ,  
the integrals I ( c ) ,  and the cominatorial factors (c; K V ( ~ , ) .  The weights are those used in 
bond percolation theory. This means that they have already been determined for small 
graphs which can be embedded in common lattices. In the continuum problem, 
however, we need them also for graphs which can be embedded in KN but not in lattices. 
We calculated these ourselves, using techniques put forth by Essam (1972). 

The integrals and the combinatorial factors arise in the virial theory of the equation 
of state of a gas, and considerable information is available. The integrals have been 
evaluated up to five point graphs for spheres (Kilpatrick 1971) and for circles (Kratky 
1976), and up to seven point graphs for oriented squares and cubes (Hoover and 
DeRocco 1962). Some information is available for six point graphs for circles and 
spheres (Ree and Hoover 1964); we shall return to this shortly. 

The mean number of clusters, and the mean cluster size, are obtained from (2.9) by 
summing over s, with weights 1 and s2 .  In the series for the mean number of clusters, the 
resulting weights are the weak K-weights; these vanish for reducible graphs. The mean 
cluster size expansion requires all connected graphs; but in the continuum problem, 
contributions from reducible graphs can be summed directly, so that only irreducible 
graphs are needed. This formal summation of reducible graphs is described in the 
appendix. 

Our calculations were limited by the availability of the integrals I ( c ) .  With two 
exceptions, we went as far as possible with this limitation. In one case, the mean 
number of clusters, we were able to get a fifth order term for circles by using a different 
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form of (2.9). It is possible to rewrite the series in terms of different integrals J (G) ,  

where G is the complementary graph of G. The weights in this form of the expansion 
are the strong weights of percolation theory. Because the virial expansion can also be 
transformed to a series involving the J(G)  integrals (Ree and Hoover 1964), some of 
these have been calculated for circles and spheres. Unfortunately for our purposes, 
many irreducible graphs have zero weight in this form of the virial expansion, and 
consequently the integrals for these graphs were not evaluated. In the case of circles, 
one six point graph has zero weight in the virial expansion and non-zero strong 
K-weight in the mean number expansion. However, J(G)  is known to vanish for this 
particular graph, so that we were able to complete the mean number expansion for 
circles to the fifth order term. 

Table 1. Numerical results. All series are in 6 = 1 units (see (3.1) in text). The numbers in 
parentheses are error estimates according to the standard convention; all other numbers are 
accurate to the digits listed. In all cases (nl) is e-”. 

P o  P ’  P Z  P 3  P 4  P 5  P 6  

Circles 
( n d  1 -2.8270 4.0364 -3.8776 
(n3) 1.2180 -4,4168 8.1 1055 
(n4) 1.6277 -7.1764 
(n5) 2.2955 
S ( p )  1 2 1,6540 1.1045 0.67129 
K ( p )  1 -1 0.39100 -0.085968 0.0 13706 -1.59(4)X 

Squares 
( n d  1 -2.87500 4.18056 -4.09590 3.03934 
(n3) 1,25000 -4,63889 8.72222 -1 1,0685 
(4 1.72222 -7.79299 17,8672 
(ns) 2.50608 -13,3485 
(nd 3,77788 
S ( p )  1 2 1.750000 1.194444 0,7473958 0.4404861 0.2494164 
K ( p )  1 -1 0.3750000 -0.06944444 6.076388 x lo- ’  7.1 1 8 0 5 6 ~  3.590375~ 

Spheres 
(nd 1 -3.0625 4.7222 -4.8848 
(4) 1.3750 -5.6159 11,5591 
(n4) 2,1842 - 11,1039(1) 
(ns) 3.7683(1) 
S ( p )  1 2 2.1250 1,9588 1.703(2) 
K ( p )  1 -1 0.31250 -0,042862 5.31(2)X10-3 

Cubes 
(nz) 1 -3.15625 5.02200 -5,36730 4.33207 
( n d  1.43750 -6.1 1343 13.1156 -18,9149 
(n4) 2.40741 -12.8069 34.3619 
(n5) 4.38979 -27.9653 
(n6) 8.45436 
S ( p )  1 2 2.312500 2,252315 2.071425 1.838835 1396086 
K ( p )  1 -1 0.2812500 -0*01736111 -2.040473~ 1376968X -3 .684968~  lo-’ 
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Also, because of the large number of connected seven point graphs, we evaluated 
the sixth order terms only for those series that could be obtained from irreducible 
graphs, i.e. the mean cluster number and the mean cluster size. 

The numerical results of these calculations are presented in table 1. The series are 
all expressed in terms of a density variable bp chosen to make the leading terms 
identical in each case. The quantity b is defined as in the virial expansion, 

b = iI (K2)  (3 .2 )  

[ +TU2 (circles) 

(squares) 

(spheres) b = (  jTU fu2  3 (3.3) 

4a3 (cubes). 

Note that 2b is the volume surrounding each point in which another point would be 
'connected' to the first one. 

The critical density pc and the critical exponent y of the mean cluster size S ( p )  were 
estimated by conventional ratio analysis of the series, based on an assumed asymptotic 
form (pc -p ) - ' .  Figure 2 shows how the ratios a,/a,-, behave as a function of l / n  for 
cubes; from this graph one can get a rough estimate of pc and y. We used a variety of 
methods to sharpen our results-graphical analysis, Neville tables, and Pad6 approxi- 
mants. The series are rather short, and there is considerable spread in the results. The 
numbers presented in table 2 are our best guesses. This table also presents results 
obtained by other investigators. The agreement is reasonable. In particular, the 
exponent y for the continuum problem is, within our rather wide error bounds, identical 
with the corresponding exponent for bond percolation on a lattice. 

1 .SI 

1 

i i i  1 1 1 
6 5 L  3 2 

1 / n  

Figure 2. Ratios for cluster size expansions (cubes). 
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Table 2. Estimates of the critical density and the exponent for the mean cluster size. The 
lattice exponents are from Sykes er a1 (1976) and Sykes and Essam (1964). 

Spheres Cubes Circles Squares 

p c  (percolation density) 
New value 
Pike and Seager (1974) 
Gayda and Ottavi (1974) 
Ottavi and Gayda (1974) 
Kurkijarvi (1974) 
Roberts (1967) 
Holcomb er a1 (1972) 
Domb (1972) 
Fremlin (1976) 

1.40*0.1 1 . 2 9 ~ 0 . 0 2  2.3 k0.15 2.20i0.02 
1.33*0.051 2.25*0.1 2.23iO.l t  
1.33 10 .05  

2.05 * 0.1 
1.38 f 0.04 

1.91 i0.08 
1.17 
1.36 * 0.1 t 
1.35 i0.05 2.20 i 0.1 

2.25 i 0.25: 

y (exponent for mean cluster size) 
New value 1 . 8 0 i  0.2 1.70*0.1 2.60*0.2 2.45k0.1 
Lattice 1.69k0.05 1.69k0.05 2.43i0.03 2.43i0.03 

+ These are our error estimates based on the authors' discussions. 

The reader should note that there are difficulties in applying standard ratio analyses 
to the mean cluster size series in lattice percolation. The radius of convergence in p is 
determined by weak singularities off the real p axis, and the series must be analysed with 
Pad6 approximants or similar techniques (Sykes et a1 1973). However, low order terms 
on the series appear to be dominated by the physical singularity, and give proper 
estimates of pc and y. We hope that the same is true in our analysis. 

P 

Figure 3. Comparison with Monte Carlo data (circles). 
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There has been considerable discussion in the literature of a discrepancy between 
the critical densities obtained by Roberts (1967) and by Holcomb et a1 (1972), and the 
critical densities obtained by other workers. The discrepant values are based on a 
scheme in which the mean cluster size is actually measured for random configurations 
generated by computer. These authors plot l/S(p) against p and extrapolate linearly to 
l/S(p,) = 0. It is likely that the linear extrapolation yields an underestimate of pc. We 
have tested this by providing our own theoretical fit to the computer data. For use in the 
circles case, the function 

S ( p ) =  16*77(2*3 1.22-0.34~ - 0 . 0 9 2 ~ ~  (3.4) 

has the critical density pc= 2.3, exponent y = 2.43, and its series expansion agrees with 
ours to the fourth power of density. In figure 3, this function is compared with Roberts' 
experimental data. The broken curves show what happens when pc is changed to 2.2 
and to 2.4. The agreement with Roberts' data is about as good as can be expected. The 
linear extrapolation gives p E  1.9. 

Appendix. Summation of reducible graphs in cluster size expansion 

The summation follows from results of Essam (1971). He denotes the weight for the 
mean cluster size expansion as mO2, so that the expansion we need is 

The weight m02 is related to another weight d(G"), called the pair connectedness 
weight of the two-rooted graph G"; the relation is 

where the sum is over all two-rootings of G. Essam shows that the only reducible 
two-rooted graphs with non-zero d(Gf ' )  are those with a string structure; that is, G is 
made up of n two-rooted irreducible subgraphs H!, H?, . . . , H:, with n t 0, and two 
one-rooted irreducible subgraphs L:  and L;,  all joined at their roots to form a string 

. . . H:Li. Furthermore, the only two-rootings of G with non-zero d(Gf') are 
those with one root in Li  and one in Lk., So the sum over two-rootings in (A.2) becomes 
a sum over the ways to set additional roots tl in Li  and t 2  in L:. For two-rootings of this 
form, d(G;') factors and we have 

L ; H ~ H ?  

mo2(G) = 2d(H?)d(H;). . . d(H:) d(Lyll) d(L;12). 64.3) 
11 12 

We also have that 

I(G) = I (L  i)I(Hy)I(H$) . . . I(H:)I(LL). 64.4) 

The sum in (A.l) may now be separated into a sum over n and over the irreducible 
subgraphs. Note that each combination of subgraphs corresponds to 2" string graphs G 
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because one must decide which root of If; attaches to 
and using (A.2) to go back to the mo2 weights, we obtain 

Performing the sum over n 

S ( p ) =  (1 -Ss(p))-l. 

Here Ss(p) is the same as (A.1) except that the sum is only over stars. 
The result holds only for the random configurations problem, and not for bond 

percolation on a lattice. The essential difference is that, in a lattice, the embedding of 
one part of a string graph constrains how the rest of it may be embedded; in a random 
configuration, there is no such interaction between the constituents of the string. 
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